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Abstract.

The higher modal dynamic plastic response of impulsively

loaded, fully clamped beams is examined herein, using various

rigid perfectly plastic theoretical procedures and a numerical

elastic-plastic computer code
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Notation

p pressure

t time

defined by equation (47c).

u axial displacement

w lateral or transverse displacement defined

in Figure 1.

x,z axial and transverse coordinates defined in

Figures 1 and 3, respectively

B,H beam breadth and beam thickness
Er energy ratio

2L beam length

M,N bending moment per unit length and axial force

per unit length defined in Figure 3.

a 0 2/4

N a N
0 S

O transverse shear force per unit length defined

in Figure 1.

o H//T’

V0 peak value of initial impulsive velocity

N transverse displacement at an interior hinge
- . 

•~~ final or permanent transverse displacement

w~ win
NSf W1/N

A defined by equation (21b)

p mass per unit l.ngth

p density of material
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when using W = 0 and W = V0 at t = 0 to evaluate the

• constants of integration. The beam reaches a permanently

deformed profile at t = T when W = 0. Thus ,

T = pv0n
2f(6M0) (19)

and the associated maximum permanent displacement at all

plastic hinges 1, 2 , . . . , n,  is

W*f = A fl~~
/12 (20)

where W*f Wf/H s A = 
~1V0

2L2/(M0H) , and 
~~~1

= ri 1/L (21a—c)

with n1 given by equation (16) for the 2n-1 mode. It is evident

from equation (1) that the final profile of the beam is

W
f 

= •Wf (22)

Equations ( 2)  and (9) indicate that M” has the same

sign as •. Thus, N” > 0 in all regions below the x axis in

Figure 2(a) since 0 > 0, while N” = 0 on the x axis. However,

the boundary conditions N = -N0 and M’ = Q = 0 were used in

the foregoing theoretical analysis for all plastic hinges

(1, 3 . a . ~ n-i) which lie below the x axis, while M =
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1--
was used for the support hinge at x = 0.t It is evident,

therefore , that the bending moment distribution has minima

at the plastic hinges located at x = (i = 1, 3, . . .
n - 1) and M > —M0 for all other parts of a beam with 4) > 0.

Moreover, it is now clear that -M0 < M < within region 1

for which 0 < x 
~

Similarly , M” < 0 for all regions which lie above

the x axis in Figure 2(a), while N = N0 and M’ Q = 0 at all

the associated plastic hinges (2, 4, . . . , n). Thus, the

: bending moment field has maxima at the plastic hinges

located at x = (i = 2, 4, . . . , n) and N ~ M., for all

other parts of a beam with 4) < 0.

It is now apparent that the bendinq moment distr ibution

associated with the foregoing theoretical solution has

-M0 < M < M,~, and is therefore statically admissible since it

satisfies the required conditions at all the plastic hinges

and nowhere violates the yield criterion in those parts of a

beam lying between the plastic hinges. Furthermore , the

solution is also kinematically admissible, so that it is

exact according to the methods of plasticity developed for

structures which undergo infinitesimal deflections.

Equations (19) and (20) with n = 1 and n = 2 agree with the

t In fact, the theoretical analysis also caters for the
• possibility that plastic hinges (2, 4, 6, . . . , n) lie

below the x axis, in which case M = - N0 at the support.
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first and third mode solutions presented in Reference El].

It is convenient at this j uncture to list , for future

reference, the total angular rotation rates (0) across the

individual plastic hinges in a beam which responds in a

symmetric deformation mode. It is evident from Figure 2(a)

and equations (10) and (12) that

= W/i’~1 (23a)

corresponds to the support hinge, while

= (r~ + ~~~)W/ {
~~1 (~~2 

— n~)}  (23b)

and I O~ I = 2(n~~1 — n~~....1)W/ { (fl~~~1 
— n~)Cn~ — 

~~~~~ 
(23c)

for hinge number 1 and a typical interior hinge i, respectively,

and
t e s t = I 8~ I/2 (23d )

for the central hinge.

3.2 Antisymmetrical Modal Response (Infinitesimal Displacements)~

Three types of shape functions •(x) = -~ (2L — x) are

required to characterise any antisymmetrical modal response

of a beam such as that indicated in Figure 2(b) Two of these

are given by equations (6) and (7), while the third i.
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n+l = : 
~~~~~ 

‘ 

~n 
< x < L (24)

for the region immediately adjacent to the mid-span, where
2n is the mode number . The negative sign in equation (24)
is associated with with region (n + 1) illustrated in
Figure 2(b), while the positive sign corresponds to the case
when the plastic hinge n lies below the x axis.

Now, substituting equation (24) into equation (2)

then integrating twice with respect to x and satisfying the

boundary conditions M ’ = Q = 0, M = + at x — and

equation (5b) at x = L gives

(25)

when using equations (9) and (10) for the plastic hinge n.

Equation (12) remains valid so that

Ti — n  + /~
•n ,  (26)n n-i 1

which when combined with equation (25) gives

-~~ 

-
- n~_ 1 

= L — (1 + l/2),/7n . (27)

~J. The + sign is associated with a plastic hinge n as
illustrated in Figure 2(b), while the - sign corresponds
to the case when hinge n lies below the x axis.
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It is evident from equations (12), (26) and (27) that

= L — (j  + i/2)/~n ,  or

L — (n — i + l/2)17n
3 

(28)

when n - j  = i. Thus, equation (14) and equation (28)

with i = 2 predicts

— L/(i + (n — l/2)/~ 1 (29)

which when combined with equation (28) gives

= 
1 + (i — 1)v~~ 30t 1+ ~n—l /2)/~

where i = 1, 2, 3, . . . , n.

The response is now sought for a fully clamped beam

subjected to an impulsive velocity field which has a shape

of the same form as Figure 2(b) with equal peak initial

velocities IV0t at every hinge 1, 2, 3, . . . , n. In fact ,

equations (6) to (11) remain valid for antisyimnetric mode

deformations, except n j  is now given by equation (28). Thus,

equations (18) to (22) remain unchanged and the maximum

transverse deflection and response duration are again given

by equations (20) and (19), respectively, but with n 1 defined

by equation (29).

The foregoing th oretical solution is exact in
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regions 1 to n as discussed earlier for the symmetric case.

It is evident for equations (2), (9) and (24) that N” has

the same sign as 4) in the region 
~n 

< x < L immediately

adjacent to the mid-span. Thus, the bending moment

distribution is statically admissible in this region because

= 0 and M = + ~~ at x = and N = 0 at x = L. Therefore,

the theoretical solution for an antisymmetric modal response

is both kinematically and statically admissible so that it

is exact according to the methods of plasticity developed

for structures which undergo infinitesimal deflections.

Equations (19) and (20) with n = 1 and n 1 defined by equation

(29)- agree with the second mode solution presented in

t 
Reference ( 11.

Equations (23a) to (23c) with defined by equation

(30) again give the total angular rotation rates across the

plastic hinges located at x = 0, x n and x = (i = 2, 3,

4, . . a , n - 1), respectively. It can be shown when

substituting equation (30~ into equation (23c) that

I O ~j  = 2v’~W(l + (n — 1/2)/2}/L. (31)

Moreover, it is evident from equations (1), (24)-(26) and

(29 ) , that the total angular rotation rate across the plastic

hinge located at x — in Figure 2(b) is also given by equation
(31) which is therefore valid for i 2, 3, 4 , . . . • fl.
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4. Influence of Finite—Displacements.

4.1 Basic Equations .

It was shown in Reference 1 3 1 that

r ~ .

J (p — iiw) ,dA — Z J (Nw — n)eidCi (32)
A i—i Cl

for an initially flat rigid perfectly plastic plate of area

A which deforms into a number of rigid regions separated by

r straight line plastic hinges each of length C1. 0~ is the

relative angular rotation rate across a straight line hinge,

w is the transverse displacement along a line hinge, and N

and 14 are the membrane force and bending moment which act on

a plane which is transverse to the mid—plane of a plate and passes

through a line hinqe.

Now, it is straightforward to show that equation (32)

ii simply an energy conservation statement, and, in fact, it has

been recently rederived by Taya and Mura 1 6] using a

variational method . The left hand side of equation (32) is

the external work rate , while the term ~M0j on the right

hand side is related to the internal energy dissipation due

to bending at the plastic hinge lines . If w is measured

vertically downwards from the mid~plan. of a plate, then

the bending moment (M) is positive at a hinge when the

material on the upp er surface of a plat . is stretched and

th. associated value of is negative. Th. term Wv8~ on

-
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~

-

the right hand side of equation (32) is related to the

internal energy dissipation of a plate arising from the

membrane (in—plane ) forces at the plastic hinge lines.

This can be demonstrated when using simple geometrical

arguments for moderate transverse deflections for which the

in-plane displacements are assur~ed to be zero. In the particular

case of a rigid region rotating with an angular rotation rate

1 0 about a simple support having w = 0, for example, it

-~ _ is evident that wo is the axial extension rate of a hinge

at the other end.
- 

Thus, the integrand on the right hand side of

equation (32) - -

D = ( N w — M ) 8 (33)

- 

can be interpreted as the internal energy dissipation
- 

rate per unit length of a straight line hinge. The

explicit form of the dissipation function (Di) depends

on the type of supports around the boundary of a plate

and on the yield condition for the material.

If the maximum normal stress yield criterion

is selected (see Pigure 5 of Reference 1 3 3) then it is

evident fr om Figure 3 that a membrane force

4-
N 2z (34)
“0

‘I 
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is accompanied by a bending moment

(35)

provided 0 < z < H/2 . Equations (34) and (35) can be

combined to give the well known yield condition

(
— l +  i!i_t (36)

~NØ)

Now, consider a fully clamped span of length 2L

which remains entirely rigid except at a central plastic

hinge of length 2c and at plastic hinges located at the

supports, each of length c. The axial extension of the

mid—gurface of the span is w2/L, or w2/2L for each half span,

where w is the transverse deflection at the central hinge. If the

axial extension of each half of the span is divided equally

between the associated support and central hinges, then the

axial strain rate is e ww/2Lc. Similarly, the curvature

change at the hinges are v/CL which gives a curvature rate

~~~~“' v/CL. Thus,

£/K w/2. (37)

However , if plane cross-5e .ions r aain plane during

deformation, then c — ~~~ which when combined with equations

z is the location of the neutral axis in Figure 3..

- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i
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(34) and (37) gives

N/N0 
= w/H (38)

which requires v/H < 1 in order to maintain N/N0 < 1.

Consequently, equation (36) is valid if 0 < w/H < 1, while

N N0 and H 0 when v/H > 1. Finally, if equations (36)

and (38) are substituted into the dissipation function (33)

for a beam or plate with a solid cross-section (N0 4M0/H),

then

Dj M0
(l + 3w2/H2)O~ (39 ) *

provided v/H < 1, and

Dj = 4M0wO~/H (40)

when v/H > 1.

4
If a beam of length 2L is subjected to a symmetric

or antisynusetric impulsive velocity distribution, then p — 0 ,

and it can be shown for one half span of the beam with unit

width that the left hand side of equation (32)

— 

J ~i~~dA =  — iLWW/3 (41)
0

when w is defined by equation (1) and 4) is given in Figures

zquatioe ~39) was deriv ed for N < 0 and Ô 4 > 0. However,
.quation (39 ) i~ also obtained for the othir possible casew h s n N >  O and b~ C O .
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2(a) and 2(b).

4.2 Symmetric Response (Maximum Normal Stress Yield Criterion).

The total energy dissipation in one half of a beam

undergoing a symmetric modal response is

D D + D + (n — 2)D + D , n > 2 (42)T 0 i n —

where the subscripts refer to the plastic hinges shown in

Figure 2 (a) and Dj  is defined by equation (33). Thus, substituting

equations (17), (23a—d), (33), (36) and (38) into equation (42)

gives

DT = 2M0W {l + /~ (n - ].)}(]. + v’~ (n — 1) + (1. + 3/~ (n - ])}W2/H2]/L,

n > 2 .  (43)

Equation (32) can now be written with the aid of equations

(41) and (43) in the non-dimensional form

+ — , W~ < 1 (44)

• where
= 6{1 + 3/~

’(n — 1) Hi + /~ (n — 1) }/A (45)

= — 6 {i +  v’~~(n — l)}2/X (46)

= W/H , — NH/V0
2 , t~ — tV0/H (47a—c)

and A is defined by equation (2lb) .

_ _ _ _ _ _ _ _  - - 
_ _ _  
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A theoretical solution of equation (44 )  may be

obtained using the method of successive approximations.

Thus, a second approximation which satisfies the initial

conditions W~, = 0 and W~ = 1 at t~, 0 can be written

t~, + B2t~
2/2 — B 1t~

4 (l + 3~2t~/5 
p 82

2t~
2/l0)/12 (48)

provided W~ < 1. The duration of motion T~ is associated

with the instant when W~ = 0, or

1 + ~~~~ — B 1T~
9 (l + 3B2T~/4 + 3B 2

2 T~ 2/20)/3  = 0 (49)

and the corresponding maximum permanent transverse displacement

W*f is given by equation (48) with t~, = T~. It can be shown

when B 1 = 0 that the theoretical predictions of equations (48)

and (49) reduce to equations (20) and (19), respectively,

for infinitesimal displacements.

Now , as remarked previously , the foregoing theoretical

solution is valid provided W~, < 1 in order to ensure N < N0
according to equation (38). The case W~, > 1 is now examined

for which N - N0 and M = 0.

If equations (40) and (41) are substituted into

equation (32), then

n
- ~LWW/ 3 — 4M0W ~ •Ô~

/H (50)
i—i

- ç

~~~~~~~~ !~~~~~~~~~~~~ T:T. ~~~~~~
- ---- — — - -—— ——----- -~~~-- _~ —. . ~~I L  ~~~~~~~ ~~~

‘
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when using equation (1). It turns out that 0~> 0 when $ 1,

and < 0 when 4) = -l (see Figure 2(a)),so that equation (50)

becomes

- iiLWW/ 3 = 4MOWOT/H (51)

where

= + (ii — 2 ) l O ~~l + l9~ I. (52)

Thus, substituting equations (17) and (23b-d) into equation

(51) gives

W* + u 2W
~~= O  (53)

where

a2 = l2{l + /~ (n — 1) 1(1 + 2/~(n — 1) 1/A. (54)

4 
The initial conditi3ns at t,, = t~1 associated with equation

(53) are W~, 1 and W~ = W~3 , where t~~ is given by equation

(48) with W~, = 1 and ~~~ is given by the time derivative of

equation (48) evaluated at t t~~. Therefore, the solution

of equation (54) is -

— (W~~/cs) sin{a(t~ 
— t~~ )}  + C08{a(t~ — t~~ ) }  (55)

which predicts a response duration

+ cl i tan~~ (W~~/cs
) (56)

and a max imum permanent transverse displacement

•:
~ 
4~

— 
I - -I-- - --; - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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ii’-
W*f = (1 + ~~ j /c*2 )

1/2 (57)

4.3 Antisyninetric Response (Maximum Normal Stress Yield Criterion).

The total energy dissipation in one half of a beam

undergoing an antisynunetric modal response is -

DT = D o + D l + (n - l ) D 1 , (58)

where the subscripts refer to the plastic hinges shown in

Figure 2(b). Suhstitutinçy equations (23a) , (23b), (30), (31),

(33) , (36) and (38) into equation (58) gives

DT = M0W(1 + /~ (n - l/2)}{2 + /~ (2n - 1) + (2 + 3fi(2n — 1)}W2/H2]/L.

(59)

If equations (41) and (59) are substituted into equation (32)

then equation (44) is again obtained , except now

= 6{l + 3/~~(n — 1/2)1(1 + v’~~(n — 1/2)1/A (60)

and B2 — 6{l + /~ (n — l/2)}2/X. (61)

Equation (29) can be used to rewrite equations (60) and (61)

in the form

= 6 ( 3  — 2n~~/ (Arc~
) (62)

and 82 — 6/ (A f l
~~
). (63)

I
It turns out that equations (45 ) and (46 ) for the

symmetric case can be recast into the same form as equations - -

- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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(62) and (63) provided n 1 is defined accoiding to equation ( 16) .

Thus , equations (44) and . (47)-(4~ ) are valid for all symmetric

and antisymmetric modal responses with and 82 defined by

equations (62) and (63) and defined by equations (16) and

(29) for the symmetric and antisyninetric cases, respectively.

It can be shown that equation (53) is also obtained

for antisynunetric modal responses with > 1, except now

a2 = 12(1 + v’~(n — 1/2)}{]. + /~(2n — 1)1/1 (64)

which can be rewritten • -

a2 = 12(2 r~ ) / (A ~ 
2 ) (65)

*1 *3

when using equation (29). However, equation (54) also takes on

the form of equation (65) when is given by equation (16)

for symmetric modes. Thus, equations (56) and (57) are valid

for all symmetric and antisynunetric modal responses when a

is defined by equation (65) and n~ is given by equations (16)

and (29) for symmetric and antisyminetric responses, respectively.

4.4 Symmetric Response (Square Yield Criterion).

It has been shown in References 1 21 and ( 3] that

the theoretical predictions of equation (32) with a square

yLeld curve relating N and M (i.e., N N0, M M0) provide

a lower bound to the experimental and Nexact~ theoretical

maximum permanent transverse displacements of uniformly loaded

fully clamped beams, while the theoretical predictions

_____________________~~~~~~ -. -

-
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corresponding to an inscribing square yield surface (i.e.,

N = 0.618 N0, M = 0.618 M0) give an upper bound.

Now, substituting equations (17), (23a—d), (41) and

N = N0 and M = + M0 into equation (32) gives

+ — cz2 -(l + /~ (n — 1)1/(2 + 4/~ (n — 1)} , (66)

where a2 is defined by equation (54). The initial conditions

of equation (66) are W,,~ = 0 and W~, = 1 at t,~, = 0. Thus , the

duration of response is

= cz 1 tan _ 1[ct_ 1( 2  + 4/~~(n — l)}/{1 + /~ (n — l)}]~ (67)

and the associated maximum permanent transverse displacement is

— 
{1+/~Jn 1)} 1 1~~~A { l + 2 /~ (n _ l) } /2 

1 (68)
2(1 + 2/~ (n — 1 )11 3(1 + /~

‘(n — l)}~ 
—

Equations (67) and (68) with n = 1 for the first mode respectively

agree with equations (35) and (34) in Reference ( 1). It is

straightforward to show when tan aT~ ctT~ and

• x{i + 2/~ (n — 1)1(1 + /~ (n - 1)}~~ /3 << 1 that equations (67)

- 

- 
and (68) respectively reduce to equations (19) and (20) for

infinitesimal displacements.

4.5 Antisymmetric Response (Square Yield Criterion).

It can be shown when substituting equations (23a), (23b),

I,

• 
- ~~~~~~~~~~~~~~~~~~~~~~~~~ —-_~~~~

-
~~~~~~

‘
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(30), (31), (41) and N = N0, M = + into equation (32)

that

+ 2~~
* 

a * 2{l + 2v’~(n 
— 1/2)) (69)

where

cz 2 = 12(1 + /~(n — 1/2)1(1 + 2/~ (n — 1/2)1/A (70)

and W~ = 0 and W~ = 1 when t~, = 0. The duration of response

is

= 1/ct tan ’{2(2 — r~~)/ct) (71)

and the maximum permanent transverse displacement is

1
W*f 

= (2 — n ) ~ 1 + Ar~ 
2 (2 — n )/3) 2 — 1j /2 (72)

* 1  *1

where equation (70) can be rewritten

= 12(2 — ~)/ (A ~~~ ) (73)

when using equation (29). It turns out that equations

(67), (68) and (54) for the symmetric case can also be recast

into the same form as equations (71) to (73), respectively,

provided n~ is now defined by equation (16). Thus, equations

(71) and (72) can be used for any symmetric or antisynunetric

response mode provided r~3 is defined by equation (16) for

symmetric modes (Figure 2(a)) and by equation (29) for

antisymmetric modes (Figure 2(b)).
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5. Discussion .

The influence of material elasticity was disregarded in

the theoretical solutions in sections 3 and 4. This is a reason-

able simplification for impulsive loadings when the energy ratio

defined by equation (44)  in Reference E l i  is not too small [ see 7 , 8] .

Recently, Wu and Witmer [4 ,5] developed a spatial finite—element

and temporal central-difference computer code JET 3C which can be

used to study the dynamic elastic-plastic response of beams. Some

numerical results for the first, second and third mode cases are

compared in Figures 4 to 9 with the rigid-plastic theoretical

predictions presented herein and the corresponding strain-rate

insensitive experimental tests reported in Re ference [1].

It is evident from Figures 4 to 6 that the simplest theoretical

solution which retains the influence of finite-deflections (equation

(72)) gives reasonable agreement with the numerical elastic-plastic

results and with the corresponding experimental values except in the

third mode case. It was ub~3erved in References [2 ]  and [3] that

the same theoretical method which retained the influence of geometry

changes gave good agreement with experimental results recorded on

uniformly loaded beams and rectangular plates made from strain—rate

insensitive materials. The numerical values for the elastic-plastic

cases in Figures 4 to 6 were estimated from the deflection-time

histories as indicated in Figures 7 and 8. The experimental results

for the third mode case in Figure 6 lie below all the numerical

and theoretical predictions and is conceivably due to the neglect

of rotary inertia , transverse shear effects and material strain
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hardening which are likely to become more important for the higher

modal responses. These effects were neglected in all the theoretical

solutions and transverse shear effects and material strain hard-

eningt were not retained in the JET 3C calculations. It should be

noted that Symonds [9] incorporated the influence of transverse

shear forces in a yield criterion and observed that they were re-

sponsible for a decrease in the slope at the mid-span of a beam loaded

dynamically. However, when these results were reconsidered in

Reference [10] , it turned out that transverse shear effects caused

the maximum permanent transverse deflections to increase as can be

interpreted from the results presented in Figure 4 of Reference [101

Nevertheless , it is not known whether the incorporation of transverse

shear effects in the yield criterion would decrease or increase the

maximum permanent transverse displacements of the fully clamped beams

examined in this article.

The magnitudes of the non—dimensional transverse shear forces

(Q/Q0) listed in Table 1 were estimated from the bending moments

in the computer output of the JET 3C numerical elastic-plastic

program . If rotary inertia is neglected, then Q - dM/dx -
(M~ — M~_ 1) / (Xj 

— x~.1)~ where (x1 
— Xj_1) is 0.25 in. for the

first and second mode cases and 0.1 in. for the third mode case.

tThe JET 3C computer program does have the capability to examine
strain hardening effects . However , the ultimate stress for the
aluminum 606].T6511 test specimens isapproximately only .L.4 percent
larger than the 0.1. percent offset yield stress ~ci0) il].
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j  The fully plastic transverse shear force is = a0H//3. It is

evident from Table 1 that the ratio Q/Q0 increases, with increase

in mode number despite the fact the Wf/H is smaller for the higher

modes. However, in order to reduce the amount of output data and

lower the printing costs, the bendinq moment distribution across a

beam was printed at approximately 20 jisec intervals. Thus, larger

values of Q/Q0 could have occurred at intermediate timest Furthermore

if the largest value of the transverse shear force (Q/Q0) for theI ~ third mode case in Table 1 is alternatively estimated at x = 0.25 in.

using the values of the bending moments at x = 0.125 in. and

x = 0.375 i n . ,  then it turns out that Q/Q~~ 0.28 at t = 20.3 ~jgec

which is still larger than Q/Q0 in the first  and second mode cases

which were calculated for a 0.25 in. separation of the modes. These

observations would appear to jus t i fy  further investigations in order

to determine the importance of transverse shear forces on plastic

yielding and to seek the influence of shear deformations on the

higher modal response of beams.

The axial strains according to the JET 3C numerical method are

listed in Table 2 for a few locations , on the upper and lower

surfaces of the beams examined in Figures 7 and 8.

tThe JET 3C computer program was used to repeat the third mode
case in Table 1 with output printed at approximately 1 psec intervals
for the first 150 sec of the response . It transpired that at
x 0.1 in., Q/Q0 equalled 0.41, 0.41 and 0.40 when t equalled 1.02eec, 16.25 ~eec and 26.4 ~j5Sc, respectively.
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The first and third mode classical vibration periods for a

fully clamped beam with the same parameters as the one considered in

Figure 8 are 596 ~isec and 110 lisec, respectively. These values are

predicated on the assumptions that the response is entirely elastic

and the displacements remain infinitesimal. It is evident from

Figure 8 that the period of the high frequency vibration of the

deformed beam is approximately 85 usec and is associated with a

third mode vibration . The low frequency vibration has a period of

approxiamtely 595 ~isec and is related to vibrations in the first

mode. It is important to emphasize that the classical values were

developed for an initially straight beam whereas the numerical

results in Figure 8 are associated with the vibrations of a per-

manently deformed beam.

The amplitude of the first modal vibration for the beam

examined in Figure 8 is sensitive to the relative magnitude of the

initial velocities at the center and outer hinges (See Figure 2 (c )

of Reference 11] ) .  This velocity ratio (V0 at center/V0 at outer

peak ) is 1.022 for the beam which is examined in Figure 8. The

amplitude of the first  modal vibration is somewhat larger

(w/H~0.07 at the beam centre) when the velocity ratio is unity

which is the initial velocity distribution required for a pure

third modal response according to a rigid-plastic theory based

on infinitesimal displacements (Figure 2(c) of El] ). The JET

3C computer program was also used to obtain the response of the same

beam with an initial velocity amplitude ratio of 0.978 which gave

rise to the first modal vibrations with an amplitude of w/H~’0.l0
at the beam center.
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The theoretical methods developed in Reference [1] and herein

disregard any in—plane or axial displacements as is customary for

this type of problem. However, it turns out that the in-plane

displacements (u) predicted by the numerical elastic-plastic method

are generally one order of magnitude smaller than the associated

lateral or transverse displacements (w) as shown in Table 3.

The ener gy ratio (Er) for a beam is defined in Reference [1] as

the ratio between the initial kinetic energy (ICE.) and the

maximum possible amount of strain energy ( S . E . )  which can be absorbed

by a beam in a wholly elastic manner. The maximum elastic strain

energy is estimated for the present problem by simply multiplying

the volume of material by ao.co/2 where = ~0/E. The temporal

variations of the total plastic work , total elastic strain energy

( S . E . )  and total kinetic energy ( I C E . )  in a beam according to the

JET 3C numerical procedure are shown in Figure 10 for three

different  cases . One suitable energy ratio for the numerical

results is given by the ratio of the initial kinetic energy to

the maximum residual elastic strain energy when plastic flow ceases.

In this circumstance, the energy ratios turn out to be 13.3, 24.5

and 46.6 for the beams examined in Figures 10 (a) to 10 Cc) , whereas

the corresponding values of E~ given by equation (44) in Reference

[1) are 2.01, 5.24 and 5.56, respectively . This confirms, at

• least for these particular cases, that the general procedure for

calculating energy ratios developed in the Appendix of Reference

(1]J and specialized to the present problem in Reference [1] is

conservative. 
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6. Conclusions.

The higher modal dynamic plastic response of fully clamped

beams has been examined using various rigid perfectly plastic

theoretical procedures and a numerical elastic-plastic computer

code. The theoretical predictions of equation (72), which retains

the influence of geometry changes, and the numerical results agree

reasonably well with the corresponding experimental values on strain

rate insensitive beams which were subjected to first and second

modal initial velocity distributions. However , all the experimental

results for the third mode case lie below the various theoretical

methods and numerical results , the reason for which is possibly

due to the neglect of transverse shear effects.
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List of Tables.

Table 1. Transverse shear force ratios (Q/Q0) according to

JET3C computer program for the beams described in the

titles of Figures 7 and 8.

Table 2. Axial strains on the upper and lower surfaces of the

beams described in the titles of Figures 7 and 8 according

to the JET3C computer program. * denotes maximum strain in

computer output .

Table 3. Ratios of axial displacements Cu) to transverse dis-

placements (w) according to JET3C computer program fcr the

beams described in the titles of Figures 7 and 8.
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SPECIMEN x t 0
MODE NUMBER 11. 1 (in) (~ sec)

1.00 40.4 0.13

1 6 0.25 121.3 0.16

0.25 141.5 0.17

0.25 20.2 0.21

2 11 0.25 40.5 0.24

0.50 40.5 0.17

0.10 20.3 0.35

3 23 0.10 60.9 0.25

0.30 60.9 0.25

~&BLE 1

j  
_  _
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TOTAL
SPECIMEN

MODE NUMBER x t AXIAL STRAIN

[11 ( in )  ( psec) LOWER UPPER
SURFACE SURFACE

0.125 101 —0.021 0.043

0.125 182 —0.030 0.065*

6 0.125 647 —0.026 0.053

0.375 647 — 0 . 0 0 0 8  0 .003

1.375 61 0.066 —0.026

0.125 101 —0.039 0.095*

2 11 0.125 46 5 — 0 . 0 3 3  0 .074

1.375 465 0 .055 — 0 . 0 2 2

0.050 61 —0.084 0.167*

1.050 61 0.121 —0.056

3 23 2.450 61 —0.057 0.122

0.050 996 — 0 .0 7 8  0.146

TABLE 2

I
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SPECIMEN
MODE NUMBER x t u

Il) (in) (i~sec) w

1.75 20.2 —0.0021

1 6 2.00 80.8 — 0 . 0 0 7 8

1.75 181.9 —0.0150

0.25 60.7 0.1992

2 11 1.75 60.7  0 .0653

1.75 80. i 0. 0691

0.20 81.3 0.1462

3 23 1.20 81.3 0.0770

2.20 81.3 0.0555

TABLE 3.
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List of Figures

Figure 1.

Figure 2. Transverse velocity fields for (a) symmetric and (b)

antisymmetric modal responses.

Figure 3. Axial stress distribution in a rigid perfectly plastic

beam subjected to an axial force (N) and a bending moment (M).

Figure 4. Maximum permanent transverse deflections of fully

clamped beams subjected to initial velocity fields with a first

modal shape.

____ _____  — 
equation (20).

________________ 
equations (48) , (49) and (57) 

eauation (72). Upper curve corresponds to

equation (72) with o .~ replaced by 0.618a0.

experimental results in Table 1 of Reference [1]

+ numerical elastic—plastic predictions of JET3C

for beam described in title of Figure 7(a).

Figure 5. Maximum permanent transverse deflections of fully

clamped beams subjected to initial velocity fields with a

second modal shape.

The various curves are defined in the title of

Figure 4 .

- experimenta l test results in Table 2 of

Reference Ill

o numerical elastic-plastic predictions of JET3C

for the beam described in the title of Figure 7(b).

+ numerical elastic—plastic predictions of JET3C

for specimen number 9 in Table 2 of Reference [1] with A = 19.36.
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Figure 6. Maximum permanent transverse deflections of fully

clamped beams subjected to initial velocity fields with a

third modal shape.

The various curves are defined in the title of

Figure 4.

o,• experimental test results recorded at center and

outer zones , respectively , and given in Table 3 of Reference El)

~•L , ~c numerical elastic-plastic predictions of JET3C for

specimen number 22 in Table 3 of Reference E l )  with A = 31.5

(25 elements/half span , time step = 0.1016 p.sec). L and c refer

to the outer and central zones of the beam.

0L, 0C numerical elastic-plastic prediction of JET3C for

the beam described in the title of Figure 8.

Fi gure 7. Transverse displacement-time histories according to

JET3C computer program with a central-difference temporal operator

and 10 finite—elements/half span.

(a )  First mode . Parameters for specimen number 6 in Table 1 of

Reference El) with A = 17.82

(time step = 0.2526 ~sec).

— — — estimated permanent transverse displacement at beam cent~

— . ... • experimental value of maximum permanent transverse

deflection of specimen number 6 in Table 1 of Re ference (1]

(b) Second mode. Parameters for specimen number 11 in Table 2

of Reference (1) with A = 46.6 (time step ~ 0.2529 ~aec).

— — 
estimated permanent transverse displacement at

x 1.50 in.  from support . The node at x — 1.50 in. is the one

nearest to n = 1.47 in.
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-

experimental values for maximum permanent

transverse deflections of specimen number 11 in Table 2 of

Re ference [1]

Figure 8. Transverse displacement-time history for the third

mode test specimen number 23 in Table 3 of Reference [1] according

to JET3C computer program with A = 48.13 (Central-difference

temporal operator , time step = 0.1016 ~isec, 25 finite-elements/

half span).

— 
transverse displacement at center.

transverse displacement at x = 1.00 in from

support. This displacement is actually negative, but is plotted

- 
positive for convenience . The rDde at x = 1.0 in is the one

nearest to n = 1.039 in. 

1 estimated permanent transverse displacement at

x 1.0 in.

2 estimated permanent transverse displacement

at beam center.

Figure 9. Comparison of experimental permanently deformed profiles

and transverse deflections predicted by various theoretical

methods.

(a) First mode. Specimen number 6 in Table 1 of Reference [1]

__________  
experimental results

equation (72) with A= 17.7.

— — 
equation (72) with a0 replaced by 0.618a0 and

A * 17.7.

+,o numerical elastic-plastic predictions of JET3C

computer program for beam described in the title of Figure 7(a)

at t — 1314 usec and 1556 &sec , respectively .
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(b) Second mode. Specimen number 11 in Table 2 of

Reference E l )

experimental results.

equation (72 )  with A= 45.99

equation (72) with a0replaced by 0.618a~ and

A = 45.99.

o , + numerical elastic-plastic predictions of

— JET3C computer program for beam described in the title of

Figure 7 (b) at t = 506 i~sec and t = 587 psec , respectively.

(c) Third mode . Specimen number 23 in Table 3 of Re ference E l ) .

experimental results.

equation (72 )  with A = 48.13

-. equation (72) with a replaced by 0.6lBa

and A = 48.13.

o, + numerical elastic-plastic predictions of JET

3C computer program for beam described in title of Figure 8

at t = 1077 usec and t = 1382 usec, respectively.

Figure 10. Temporal variation of plastic work, elastic strain

energy (S.E.) and kinetic energy (K.E.) for (a) first mode,

(b) second mode and (c) third mode test specimens described

in the titles of Figures 7(a), 7(b) and 8, respectively.

(R = 1 is total initial kinetic energy).
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~agree reasonably wel l wi th the corresponding experimental values
on strain rate insensitive beams which were subjected to first .... *~~~~~J .  -
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— 2and second modal initial velocity distributions. However, all

the experimental results for the third mode case lie below thevarious theoretical methods and n umerical results, the reason
for which is possibly due to the neglect of transverse shear ef-
fects.
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